
MPI-IO

• Overview

- Offers an alternative interface to the HPSS Client API library for applications 
written for a distributed memory programming model using message passing.

- Coordinates and simplifies parallel access to HPSS files from multiple 
processes.

- Utilizes the MPI Datatype abstraction paradigm to facilitate distributed data 
accesses to a file from multiple processes, allowing each process to view only 
the data distributed to it.

- Provides functionality to merge multiple small data accesses into a single 
large access to improve performance and efficiency.

- Enables nonblocking accesses to hide I/O costs.

- The MPI-IO API is fully documented in the HPSS Programmer’s Reference 
Manual, Volume 1.
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A Brief History of MPI-IO

• Initially developed by IBM in 1994 as a research project.

• Gained support from NASA Ames, then LLNL.

• Added as a chapter to MPI-2 draft in 1996.

• Published in MPI-2 standard in 1997.

- Standard is available on line at:

http://www.mcs.anl.gov/mpi

• Distributed with HPSS 4v1 release in 1998.



Compiling MPI-IO Applications

• Include files
- You must include the following header file in every C module using MPI or the 

MPI-IO API.
#include “mpio.h”

- You must specify the path name to the HPSS include directory on the 
compilation directive.
-I/usr/lpp/hpss/include

• Libraries
- You must link with the MPI-IO and MPI libraries as well as with all libraries 

needed for the HPSS Client API (or IPI3 equivalent).
-lmpioapi
-lhpssapi
-lhpss
-lmpi

- You must specify the path name to the HPSS library directory on the load 
directive.
-L/usr/lpp/hpss/lib



Sample Makefile
CC = mpcc_r4
COMPFLAGS = -g
INCLUDE_PATH = -I. -I/usr/lpp/hpss/include -I/usr/lpp/encina/include \

-I/usr/local/mpi/include
CFLAGS = $(INCLUDE_PATH) $(COMPFLAGS)

.c.o:; @echo “Compiling $<“...
@$(CC) $(CFLAGS) -c $<

LIBS = -L/usr/lpp/hpss/lib \
-lmpioapi -lhpssapi_ipi -lhpss_ipi -lhpssipi3 -lipi3 \
-L/usr/lpp/encina \
-lEncina -lEncClient \
-ldce \
-L/usr/local/mpi/lib \
-lmpi \
-ldcepthreads -lpthreads

PROG = sample_mpio

all: $(PROG)

sample_mpio: sample_mpio.o
@echo “Linking $@”...
@$(CC) $@.o -o $@ $(CFLAGS) $(LIBS)



Notes on compilation and linking environment

• Your system administrator will need to set up an mpcc_r4 entry. This 
interface to the xlc compiler needs to merge the DCE and MPI options 
together to get the appropriate DCE and MPI libraries, along with the 
appropriate threads libraries and thread-safe C libraries.

• The sample Makefile on the previous slide shows the set up for MPI-IO with 
MPICH, from Argonne National Laboratory.  HPSS MPI-IO can also be 
linked to the proprietary MPI from IBM (/usr/lpp/ppe.poe/lib/libmpi_r),  
with appropriate changes to the Makefile for the include and library paths.

• The order of libraries is important!  Although xlc versions may 
automatically load the same libraries specified, they do not always get 
them in the correct order.  Explicitly ordering them in the load directive will 
assure that the libraries are correct.

• The Makefile shows that the IPI3 libraries can be loaded even when the 
HPSS_TRANSFER_TYPE will be TCP, provided the underlying HPSS 
system was built with IPI3 support enabled.  If only TCP transfers will be 
used, the IPI3 libraries need not be used.



Environment Variables

• The following environment variables can be used to control the execution 
of an MPI-IO program:

- MPIO_LOGIN_NAME DCE principal name under which to execute
the application.

- MPIO_KEYTAB_PATH Path name to keytab file for the given principal.

- MPIO_DEBUG Flag (0 or nonzero) disabling or enabling
debugging messages (to stderr) from the 
MPI-IO library.

• You must/may use the following HPSS environment variables to control the 
execution of your MPI-IO program:

- HPSS_LS_NAME DCE CDS name of HPSS Location Server.

- HPSS_TRANSFER_TYPE TCP or IPI3.

- HPSS_DEBUG Flag disabling/enabling debugging messages.



Error Codes

• MPI-IO is part of the MPI (MPI-2) Standard, which dictates that each API will 
filter its return status through an error handler.

• The default error handler for most MPI APIs is MPI_ERRORS_ARE_FATAL, 
which causes a program to abort if an error is detected and returned by an 
MPI API.

• For MPI-IO APIs the default error handler is MPI_ERRORS_RETURN, which 
allows the return value of the API to carry an error code.

• Error return codes must be checked by the application.  If an MPI-IO 
function does not return MPI_SUCCESS, the application must handle the 
error appropriately.

• MPI_Error_string can be used to translate an MPI-IO error code into a 
printable string message.

• User-defined error handlers may be used to alter the default error handling 
on a per-file basis.



DCE Login Context

• Prior to executing an MPI-IO application, a user should create a keytab file 
for the DCE principal under which the application will be run.

• This allows authentication for multiple, distributed processes from a single 
location (e.g., a globally accessible keytab file).

• Create a keytab file using rgy_edit interactively:

%rgy_edit
rgy_edit=>kta -p login_name -f keytab_path
... prompt for password for login_name
rgy_edit=>quit
%setenv MPIO_LOGIN_NAME login_name
%setenv MPIO_KEYTAB_PATH keytab_path

• If MPIO_KEYTAB_PATH is not specified, MPI-IO will attempt to use the 
current DCE login context in each process environment; if no such 
logincontext exists in any process environment, MPI-IO will fail to be able 
to initialize the HPSS Client API, and MPI_Init will fail.



API Overview

• The MPI-IO library functions can be divided into the following categories:

- MPI-IO environment management
• initialization, finalization

- File creation and manipulation
• open, close, delete, attribute setting and retrieval

- File views
• MPI_Datatypes used for etypes, filetypes, and buftypes

- File accesses
• read, write, seek; nonblocking and collective accesses

- File interoperability
• data conversions

- File consistency
• atomicity, sync

- Error handling facilities
• creating error handlers, retrieving error messages



Preliminary concepts

• The MPI-IO APIs are defined in terms of the following concepts:
- A file is an ordered collection of typed data items.

- A filedisplacement is an absolute byte position relative to the beginning of a file.

- An etype is the unit of data access and positioning used within a file.

- A filetype is the basis for partitioning a file among processes and defines a template for 
accessing the file.

- A view defines the current set of data visible and accessible from an open file as an 
ordered set of etypes.

- An offset is a position in the file relative to the current view, expressed as a count of 
etypes.

- A file pointer is an implicit offset maintained by MPI-IO.  Individual file pointers are local 
to each process that opened the file; a shared file pointer is shared by the group of 
processes that opened the file.

- A file handle is an opaque object created by MPI_File_open and freed by 
MPI_File_close.



MPI Datatypes to describe file data distribution

• etypes specify the smallest unit of data accessed in the file; it can be any 
MPI Datatype.  In the example below, the etype is a struct of three elements.

• A filetype is composed of repeated tilings of etypes and describes a pattern 
of accessible and inaccessible data.  The collection of filetypes for all 
processes accessing a file defines the data distribution across processes.  
In the diagram below, each process has access to the shaded portions of 
the file, and not to the rest of the file.

• The file displacement allows skipping over labelling information in a file.

displacement file type

proc 0
proc 1
proc 2
proc 3



Establishing the MPI-IO Environment

• MPI-IO is initialized by initializing the MPI environment.  By including the
“mpio.h” header file, a call to MPI_Init will also invoke an MPI-IO-specific 
initialization.  MPI_Init should be invoked from main, and should pass the 
addresses of main’s arguments as follows:

MPI_Init(&argc, &argv);

- MPI_Init for MPI-IO
• Initializes MPI-IO data structures such as file tables and message types
• Initializes error handlers
• Establishes login context from environment variables
• Initializes HPSS Client API interface
• Spawns MPI-IO server thread in each process

• MPI-IO, like MPI, needs a finalization step, invoked before exiting main:
MPI_Finalize();

- MPI_Finalize for MPI-IO
• Deallocates resources used
• Terminates server threads



API for creating a file or opening an existing file

• When opening a file you specify an HPSS path name and a group of
participating processes through an MPI communicator.  The mode of the 
file must be specified and other hints can be provided as well. If 
successful, a file handle is returned; otherwise an error code is returned.

• If the file does not exist, MPI_MODE_CREATE can be used with the amode 
argument to create the file.

#include “mpio.h”

int MPI_File_open(MPI_Comm   comm,         /* IN */
char *     filename,     /* IN */
int        amode,        /* IN */
MPI_Info   info,         /* IN */
MPI_File * fh);          /* OUT */



Creating a file - example

amode = MPI_MODE_CREATE | MPI_MODE_RDWR;

rc = MPI_File_open(MPI_COMM_WORLD,
“/users/u28/linda/testfile”,
amode, MPI_INFO_NULL, &fh);

if (rc != MPI_SUCCESS)
/* Could not open file */ . . . 

- MPI_File_open is a collective call; all processes in the communicator group 
must invoke MPI_File_open.  The communicator may be MPI_COMM_SELF.

- The full HPSS file path name must be specified.

- The access mode of the file is specified at the MPI-IO interface level; file 
permissions are specified as a file hint.

- For complete details on how to specify the mode and hints, see the HPSS 
Programmer’s Reference Manual.



APIs for closing and deleting files

• Closing a file is done with MPI_File_close.

• If the file was opened with MPI_MODE_DELETE_ON_CLOSE included in the 
amode argument, the file will automatically be deleted.

• Otherwise, a file may be deleted with MPI_File_delete.

#include “mpio.h”

int MPI_File_close(MPI_File  fh);             /* IN */

int MPI_File_delete(char *   filename,        /* IN */
MPI_Info info);           /* IN */



APIs for changing or retrieving file size

• To set the size of the file without preallocating, use MPI_File_set_size.

• To set the size of the file AND preallocate space for the file as specified, 
use MPI_File_preallocate.

• To get the current size of the file, use MPI_File_get_size.  (Note:  this size 
does not necessarily indicate the amount of space that has been allocated; 
only segments to which some data has been written have been allocated.)

#include “mpio.h”

int MPI_File_set_size(MPI_File      fh,          /* IN */
MPI_Offset    size);       /* IN */

int MPI_File_preallocate(MPI_File   fh,          /* IN */
MPI_Offset size);       /* IN */

int MPI_File_get_size(MPI_File      fh,          /* IN */
MPI_Offset *  size);       /* OUT */



MPI-IO File hints

• MPI_Info type used to provide file hints

- MPI-2 introduced a new predefined type, MPI_Info, that associates a key with 
a value, where both the key and value are strings.

- The MPI-2 standard reserves some info keys for MPI-IO.  An implementation 
may or may not interpret these reserved keys, and is free to interpret others.

- The HPSS MPI-IO interprets the following info keys and translates them into 
appropriate HPSS hint values at open time.  Although other MPI-IO APIs 
allow file hint arguments, only the hints given at open time are currently used.

• “file_perm” Mode
• “striping_factor” StripeWidth
• “striping_unit” StripeLength
• “hpss_cos” COSId
• “hpss_sclasstype” AvgLatency  (0 for DISK, 1 for TAPE)
• “hpss_max_file_size” MaxFileSize
• “hpss_min_file_size” MinFileSize
• “hpss_access_size” OptimumAccessSize



File Views

• When a file is initially opened, the file view for each process allows access 
to every byte of the file.  That is, the default etype and filetype are 
MPI_BYTE.  Use MPI_File_set_view to change the view for each process.

• Use MPI_File_get_view to retrieve characteristics of the current view.
#include “mpio.h”

int MPI_File_set_view(MPI_File       fh,           /* IN */
MPI_Offset     disp,         /* IN */
MPI_Datatype   etype,        /* IN */
MPI_Datatype   filetype,     /* IN */
char *         datarep,      /* IN */
MPI_Info       info);        /* IN */

int MPI_File_get_view(MPI_File       fh,           /* IN */
MPI_Offset *   disp,         /* OUT */
MPI_Datatype * etype,        /* OUT */
MPI_Datatype * filetype,     /* OUT */
char *         datarep);     /* OUT */    



File view example

• Example:

MPI_Datatype filetype;
...
MPI_Type_contiguous(100, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

rc = MPI_File_set_view(fh, (MPI_Offset) 0, MPI_FLOAT,
filetype, “native”);

- Data repesentation used is native (default).
- Initial displacement of 0 must be cast to MPI_Offset.
- Example datatype does not contain ‘holes’; if all processes used this 

datatype for setting the file view, each process would have access to all 
elements in the file.

- Positioning and read/write counts are in terms of MPI_FLOAT units; no 
smaller unit of data can be accessed using this view.

- The filetype will be repeatedly tiled over the file (i.e., there can be more 
than 100 floats in the file).



Data Accesses 

• Three flavors of offset specification supported
- Explicit offset specification

• Read/Write API requires an explicit nonnegative offset in etype units.

- Individual pointer offset specification
• Read/Write API implicitly uses a per-process file pointer, which indicates the 

offset in etype units, according to each process’ view.

- Shared pointer offset specification
• Read/Write API implicitly uses a per-file pointer, which indicates the offset in 

etype units; requires that all processes specify the same view (i.e., all have 
access to the same data in the file).

• Collective operations
- Participation of all processes that opened the file is required.
- Merges multiple requests into a single request to HPSS.

• Nonblocking operations
- Can be split collective or noncollective.
- Allows overlapping of I/O with computations.



Explict offset APIs

#include “mpio.h”

int MPI_File_read_at(MPI_File      fh,        /* IN */
MPI_Offset    offset,    /* IN */
void *        buf,       /* OUT */
int           count,     /* IN */
MPI_Datatype  datatype,  /* IN */
MPI_Status *  status);   /* OUT */

int MPI_File_write_at(MPI_File     fh,        /* IN/OUT */
MPI_Offset   offset,    /* IN */
void *       buf,       /* IN */
int          count,     /* IN */
MPI_Datatype datatype,  /* IN */
MPI_Status * status);   /* OUT */

• offset is the position in # etype units from the beginning of the file view.
• buf is the address of the application’s buffer to read or write.
• count is the number of datatype units to read from or write to the file.
• status object can be queried to get count of datatype units read or written.



Explicit offset example

float      array[50];
MPI_Status status;
int        count;
...
... /* code to assign array values, etc. */
...
rc = MPI_File_write_at(fh, (MPI_Offset)100, array, 50,

MPI_FLOAT, &status);

if (rc != MPI_SUCCESS)
... /* Handle error */

MPI_Get_count(status, MPI_FLOAT, &count);
if (count != 50)

... /* Handle error */

rc = MPI_File_read_at(fh, (MPI_Offset)0, array, 50,
MPI_FLOAT, &status);

...



Nonblocking explicit offset APIs

#include “mpio.h”

MPI_File_iread_at(MPI_File       fh,          /* IN */
MPI_Offset     offset,      /* IN */
void *         buf,         /* OUT */
int            count,       /* IN */
MPI_Datatype   datatype,    /* IN */
MPI_Request *  request);    /* OUT */

MPI_File_iwrite_at(MPI_File      fh,          /* IN/OUT */
MPI_Offset    offset,      /* IN */
void *        buf,         /* IN */
int           count,       /* IN */
MPI_Datatype  datatype,    /* IN */
MPI_Request * request);    /* OUT */

• request is returned when I/O is initiated; it is queried 
later by an MPI_Wait or MPI_Test to determine if I/O is 
complete.



Collective explicit offset APIs

#include “mpio.h”

MPI_File_read_at_all(MPI_File      fh,           /* IN */
MPI_Offset    offset,       /* IN */
void *        buf,          /* OUT */
int           count,        /* IN */
MPI_Datatype  datatype,     /* IN */
MPI_Status *  status);      /* OUT */

MPI_File_write_at_all(MPI_File     fh,           /* IN/OUT */
MPI_Offset   offset,       /* IN */
void *       buf,          /* IN */
int          count,        /* IN */
MPI_Datatype datatype,     /* IN */
MPI_Status * status);      /* OUT */

• All processes that opened the file must participate in the read or write.
• A single (logical) transfer is described to HPSS from the collective 

requests, and parallel transfer of data to all processes is attempted.



Individual File Pointers

• Individual file pointers are set to 0 when a file is opened and when a view 
for a file is set.

• MPI_File_seek can be used to set an individual file pointer to a new 
position in the file.  This is always relative to the current process’ view.

• Recall that the position in the file kept by the pointer is in terms of number 
of etype units from the beginning of the file in the current view.  This is a 
byte offset only if the etype in the current view is MPI_BYTE.

• MPI_File_get_position can be used to retrieve the current position of an 
individual file pointer for a given process.

• MPI_File_get_byte_offset can be used to convert an etype-unit position into 
a byte offset.



Individual file pointer APIs

#include “mpio.h”

int MPI_File_read(MPI_File      fh,        /* IN */
void *        buf,       /* OUT */
int           count,     /* IN */
MPI_Datatype  datatype,  /* IN */
MPI_Status *  status);   /* OUT */

int MPI_File_write(MPI_File     fh,        /* IN/OUT */
void *       buf,       /* IN */
int          count,     /* IN */
MPI_Datatype datatype,  /* IN */
MPI_Status * status);   /* OUT */

• buf is the address of the application’s buffer to read or write.
• count is the number of datatype units to read from or write to the file.
• status object can be queried to get count of datatype units read or written.
• Each process reads or writes at the etype position indicated by that 

process’ individual file pointer, according to the current process’ view.



Nonblocking individual file pointer APIs

#include “mpio.h”

int MPI_File_iread(MPI_File      fh,        /* IN */
void *        buf,       /* OUT */
int           count,     /* IN */
MPI_Datatype  datatype,  /* IN */
MPI_Request * request);  /* OUT */

int MPI_File_iwrite(MPI_File      fh,        /* IN/OUT */
void *        buf,       /* IN */
int           count,     /* IN */
MPI_Datatype  datatype,  /* IN */
MPI_Request * request);  /* OUT */

• request is returned when I/O is initiated; it is queried 
later by an MPI_Wait or MPI_Test to determine if I/O is 
complete.

• Each process reads or writes at the etype position indicated by that 
process’ individual file pointer, according to the process’ current view.



Nonblocking individual file pointer example

float buffer1[BUFSIZE], buffer2[BUFSIZE];
MPI_Request request;
MPI_Status status;

... /* Compute buffer1 elements */

rc = MPI_File_iwrite(fh, buffer1, BUFSIZE, MPI_FLOAT,
&request);

if (rc != MPI_SUCCESS)
... /* Handle error */

... /* Compute buffer2 elements while I/O completes */

MPI_Wait(request, &status);

rc = MPI_File_iwrite(fh, buffer2, BUFSIZE, MPI_FLOAT,
&request);



Collective individual file pointer APIs

#include “mpio.h”

MPI_File_read_all(MPI_File      fh,           /* IN */
void *        buf,          /* OUT */
int           count,        /* IN */
MPI_Datatype  datatype,     /* IN */
MPI_Status *  status);      /* OUT */

MPI_File_write_all(MPI_File     fh,           /* IN/OUT */
void *       buf,          /* IN */
int          count,        /* IN */
MPI_Datatype datatype,     /* IN */
MPI_Status * status);      /* OUT */

• All processes that opened the file must participate in the read or write.
• A single (logical) transfer is described to HPSS from the collective 

requests, and parallel transfer of data to all processes is attempted.
• Each process reads or writes at the etype position indicated by that 

process’ individual file pointer, according to the process’ current view.



Shared File Pointers

• The shared file pointer is set to 0 when a file is opened and when a view for 
a file is set.

• All processes using the shared file pointer must have the same file view.

• MPI_File_seek_shared can be used to set a shared file pointer to a new 
position in the file.  This is always relative to the current view.

• Recall that the position in the file kept by the pointer is in terms of number 
of etype units from the beginning of the file in the current view.  This is a 
byte offset only if the etype in the current view is MPI_BYTE.

• MPI_File_get_shared_position can be used to retrieve the current position 
of a shared file pointer.

• MPI_File_get_byte_offset can be used to convert an etype-unit position into 
a byte offset.



Shared file pointer APIs

#include “mpio.h”

int MPI_File_read_shared(MPI_File      fh,       /* IN/OUT */
void *        buf,       /* OUT */
int           count,     /* IN */
MPI_Datatype  datatype,  /* IN */
MPI_Status *  status);   /* OUT */

int MPI_File_write_shared(MPI_File     fh,       /* IN/OUT */
void *       buf,       /* IN */
int          count,     /* IN */
MPI_Datatype datatype,  /* IN */
MPI_Status * status);   /* OUT */

• buf is the address of the application’s buffer to read or write.
• count is the number of datatype units to read from or write to the file.
• status object can be queried to get count of datatype units read or written.
• Each process reads or writes at the etype position indicated by the shared 

file pointer, according to the current file view.



Nonblocking shared file pointer APIs

#include “mpio.h”

int MPI_File_iread_shared(MPI_File      fh,      /* IN/OUT */
void *        buf,       /* OUT */
int           count,     /* IN */
MPI_Datatype  datatype,  /* IN */
MPI_Request * request);  /* OUT */

int MPI_File_iwrite_shared(MPI_File     fh,      /* IN/OUT */
void *        buf,      /* IN */
int           count,    /* IN */
MPI_Datatype  datatype, /* IN */
MPI_Request * request); /* OUT */

• request is returned when I/O is initiated; it is queried 
later by an MPI_Wait or MPI_Test to determine if I/O is 
complete.

• Each process reads or writes at the etype position indicated by the shared 
file pointer, according to the current file view.



Collective shared file pointer APIs

#include “mpio.h”

int MPI_File_read_ordered(MPI_File      fh,      /* IN/OUT */
void *        buf,      /* OUT */
int           count,    /* IN */
MPI_Datatype  datatype, /* IN */
MPI_Status *  status);  /* OUT */

int MPI_File_write_ordered(MPI_File     fh,      /* IN/OUT */
void *       buf,      /* IN */
int          count,    /* IN */
MPI_Datatype datatype, /* IN */
MPI_Status * status);  /* OUT */

• buf is the address of the application’s buffer to read or write.
• count is the number of datatype units to read from or write to the file.
• status object can be queried to get count of datatype units read or written.
• Each process reads or writes at the etype position at which the shared 

pointer would be after all processes whose ranks are less than that of this  
process had accessed their data.



Collective shared file pointer example

integer buffer[SLICESIZE];
MPI_Status status;
...
... /* Compute elements of buffer */
...
rc = MPI_File_seek_shared(fh, (MPI_Offset)0, 

MPI_SEEK_END);
if (rc != MPI_SUCCESS)

... /* Handle error */

rc = MPI_File_write_ordered(fh, buffer, SLICESIZE,
MPI_INT, &status);

if (rc != MPI_SUCCESS)
... /* Handle error */

- Not all processes need write the same amount (i.e., SLICESIZE can vary per 
process).  The write position for each process depends on the rank of each 
process and the amount of data written by all processes of lesser rank.



Split Collective Accesses

• The APIs in this category are intended to allow a restricted form of 
nonblocking collective accesses.  (Note that all the previously described 
nonblocking APIs have been noncollective.)

• Each API is split into two interfaces, one to begin the I/O and one to end 
(complete) the I/O.

• At most one split collective call is allowed per file handle at any one time.  
This is consistent with MPI’s paradigm of allowing only one collective 
communication per communicator, which is extended to allowing only one 
collective operation per file handle at a time.

• Although an implementation is allowed to implement split collective calls 
using the corresponding blocking collective routine, at either the begin or 
end point of the collective call, HPSS MPI-IO split collective calls are 
implemented as nonblocking calls.  Like other nonblocking APIs, a thread 
is spawned to perform the I/O at the begin call, allowing concurrency with 
the calling thread.  Unlike other nonblocking APIs, the corresponding end 
call is used instead of MPI_Wait or MPI_Test when the I/O is complete.



Split collective APIs with explicit offsets
#include “mpio.h”

int MPI_File_read_at_all_begin(MPI_File     fh,         /* IN */
MPI_Offset   offset,     /* IN */
void *       buf,        /* OUT */
int          count,      /* IN */
MPI_Datatype datatype);  /* IN */

int MPI_File_read_at_all_end(MPI_File     fh,           /* IN */
void *       buf,          /* OUT */
MPI_Status * status);      /* OUT */

int MPI_File_write_at_all_begin(MPI_File    fh,         /* IN/OUT */
MPI_Offset  offset,     /* IN */
void *      buf,        /* IN */
int         count,      /* IN */
MPI_Datatype datatype); /* IN */

int MPI_File_write_at_all_end(MPI_File     fh,          /* IN */
void *       buf,         /* OUT */
MPI_Status * status);     /* OUT */



Split collective APIs with individual file pointers
#include “mpio.h”

int MPI_File_read_all_begin(MPI_File     fh,         /* IN */
void *       buf,        /* OUT */
int          count,      /* IN */
MPI_Datatype datatype);  /* IN */

int MPI_File_read_all_end(MPI_File     fh,           /* IN */
void *       buf,          /* OUT */
MPI_Status * status);      /* OUT */

int MPI_File_write_all_begin(MPI_File    fh,         /* IN/OUT */
void *      buf,        /* IN */
int         count,      /* IN */
MPI_Datatype datatype); /* IN */

int MPI_File_write_all_end(MPI_File     fh,          /* IN */
void *       buf,         /* OUT */
MPI_Status * status);     /* OUT */



Split collective APIs with shared file pointers
#include “mpio.h”

int MPI_File_read_ordered_begin(MPI_File     fh,         /* IN */
void *       buf,        /* OUT */
int          count,      /* IN */
MPI_Datatype datatype);  /* IN */

int MPI_File_read_ordered_end(MPI_File     fh,           /* IN */
void *       buf,          /* OUT */
MPI_Status * status);      /* OUT */

int MPI_File_write_ordered_begin(MPI_File    fh,         /* IN/OUT */
void *      buf,        /* IN */
int         count,      /* IN */
MPI_Datatype datatype); /* IN */

int MPI_File_write_ordered_end(MPI_File     fh,          /* IN */
void *       buf,         /* OUT */
MPI_Status * status);     /* OUT */



Split collective example

char text[MY_NLINES * 512];
MPI_Status status;

...
rc = MPI_File_read_ordered_begin(fh, text,

MY_NLINES * 512,
MPI_CHAR);

if (rc != MPI_SUCCESS)
... /* Handle error */

... /* Do some other computational work */

rc = MPI_File_read_ordered_end(fh, text, &status);

if (rc != MPI_SUCCESS)
... /* Handle error */



File Interoperability

• File interoperability is the ability to read a file previously written.

• The file may or may not have been written using the same data 
representation as is used by the current application.

• File views define the data representation to use for interpreting the bits of 
data written to a file.  This representation may or may not be the native 
representation on the current platform.

• MPI-IO supports three predefined data representations:  “native”, 
“internal”, and “external32”.

• For HPSS MPI-IO, “native” and “internal” are equivalent on AIX systems, 
but “external32” representation differs from AIX representation for long 
doubles (MPI_LONG_DOUBLE).

• MPI-IO also supports user-defined data representations, where the user is 
responsible for providing functions that can be used to convert to/from a 
file representation to the native representation of the platform.



APIs for file interoperability

• Use MPI_Register_datarep to create a user-defined data representation.  A 
registered datarep can be used in a set view operation to indicate that the 
file data read or written must be converted accordingly.

• Use MPI_File_get_type_extent to determine the extent of an MPI datatype in 
a given file.  The data representation in the current view of the file will be 
used to determine the datatype extent.

#include “mpio.h”

int MPI_Register_datarep(char *     datarep,        /* IN */
MPI_Datarep_conversion_function * read_conv_fn,   /* IN */
MPI_Datarep_conversion_function * write_conv_fn,  /* IN */
MPI_Datarep_extent_function *     dtype_ext_fn,   /* IN */
void *                            extra_state);   /* IN */

int MPI_File_get_type_extent(MPI_File     fh,       /* IN */
MPI_Datatype datatype, /* IN */
MPI_Aint *   extent);  /* OUT */



File interoperability example

int my_read_fn(void *, MPI_Datatype, int, void *, 
MPI_Offset, void *);

int my_write_fn(void *, MPI_Datatype, int, void *, 
MPI_Offset, void *);

int my_extent_fn(MPI_Datatype, MPI_Aint *, void *);
MPI_Aint my_extent, mpi_extent;

rc = MPI_Register_datarep(“my_own_rep”, my_read_fn, 
my_write_fn, my_extent_fn,
NULL);

if (rc != MPI_SUCCESS) ... /* Handle error */

rc = MPI_File_set_view(fh, (MPI_Offset)0,
MPI_LONG_DOUBLE, MPI_LONG_DOUBLE,
“my_own_rep”, MPI_INFO_NULL);

if (rc != MPI_SUCCESS) ... /* Handle error */

MPI_File_get_type_extent(fh, MPI_DOUBLE, &my_extent);
MPI_Type_extent(MPI_DOUBLE, &mpi_extent);



File Consistency

• MPI-IO provides three levels of consistency semantics to deal with multiple 
accesses to a single file:
- sequential consistency among all accesses through a single file handle;
- sequential consistency among all accesses using file handles created from a 

single collective open with atomic mode enabled; and
- user-imposed consistency among accesses other than the above.

• Maintaining file consistency means guaranteeing that concurrent accesses 
are sequentialized so that data is not being modified while being accessed.
- Multiple read accesses can take place concurrently with no loss of 

consistency, provided no write access is also concurrent with the reads.
- Multiple write accesses must be ordered so that no two writes of the same 

data positions are attempted concurrently.

• Setting the MPI-IO atomicity mode of an MPI-IO file handle to true requires 
sequentialization of concurrent accesses.  Since HPSS sequentializes all 
accesses through a given HPSS file handle, MPI-IO atomic mode is 
enforced by default.  (However, if MPI-IO atomic mode is enabled, errors 
will be reported if concurrent access attempts are detected.)



File consistency (continued)

• Single file handle consistency
- If a file is opened by a single process, all accesses are sequentialized by the 

HPSS BFS and Client API, regardless of the MPI-IO atomicity setting, and 
regardless of any concurrency (e.g., multithreading) in the process.

• Multiple file handle consistency
- If a file is opened by multiple processes with a single open, each process has 

its own MPI-IO file handle for the file, but these all refer to the same HPSS file 
handle and hence to the same BFS file handle.  Multiple accesses on this file 
handle are still sequentialized by HPSS, regardless of atomicity setting and 
amount of concurrency in the processes.

- If a file is opened by multiple processes with multiple opens, each open gets a 
new BFS file handle.  Although each file handle refers to the same file, there 
is no sequentialization enforced by HPSS with multiples handles, so the user 
must take precautions to protect the consistency of the file.  Since each file 
open also generates its own MPI-IO file handle per process, atomicity and file 
sync operations are not sufficient to synchronize accesses to the file.



File consistency APIs

• Use MPI_File_set_atomicity to toggle atomic mode on or off.

• Use MPI_File_get_atomicity to retrieve the current atomicity mode.

• Use MPI_File_sync to synchronize multiple processes accessing file 
handles returned from a single open file operation.

#include “mpio.h”

int MPI_File_set_atomicity(MPI_File fh,      /* IN/OUT */
int      flag);   /* IN */

int MPI_File_get_atomicity(MPI_File fh,      /* IN */
int *    flag);   /* OUT */

int MPI_File_sync(MPI_File fh);              /* IN/OUT */



File Error Handlers

• MPI-IO associates an error handler with a file handle (i.e., an MPI_File 
object) just as MPI allows an error handler to be associated with an 
MPI_Comm handle.

• For each MPI-IO API that takes a file handle as an argument, when an error 
is detected, the error code is passed to the error handler associated with 
the file handle.  If the error handler returns, so does the MPI-IO API, 
returning the detected error code.  Otherwise, the error handler aborts, and 
the application terminates.

• For each MPI-IO API that does not have a file handle passed to it (e.g., 
MPI_File_open, MPI_File_delete), the default file error handler 
(MPI_ERRORS_RETURN) is invoked for the error code.

• The default error handler for a file handle can be changed to another 
predefined error handler or to a user-defined error handler.  Likewise, the 
default file error handler can be changed.



MPI-IO Error Handler APIs

• Use MPI_File_create_errhandler to create an MPI_Errhandler that can be 
used for errors detected with operations on a given file handle.

• Use MPI_File_set_errhandler to associate an error handler with a file 
handle or the default file error handler (file argument of MPI_FILE_NULL).

• Use MPI_File_get_errhandler to retrieve the error handler currently 
associated with a file handle or the default file error handler (file argument 
of MPI_FILE_NULL).

#include “mpio.h”

int MPI_File_create_errhandler(
MPI_File_errhandler_fn *  function,    /* IN */
MPI_Errhandler *          errhandler); /* OUT */

int MPI_File_set_errhandler(MPI_File   file,        /* IN */
MPI_Errhandler   errhandler); /* OUT */

int MPI_File_get_errhandler(MPI_File   file,        /* IN */
MPI_Errhandler * errhandler); /* OUT */



MPI-2 APIs Included

• In order to implement MPI-IO, many other features of the MPI-2 standard 
were needed.  In addition to the APIs for MPI-IO, the following types and/or 
APIs were implemented.  See the MPI-2 Standard for complete details.

- MPI_Info
• MPI_Info_create
• MPI_Info_set
• MPI_Info_delete
• MPI_Info_get
• MPI_Info_get_valuelen
• MPI_Info_get_nkeys
• MPI_Info_get_nthkey
• MPI_Info_dup
• MPI_Info_free

- MPI error handling
• MPI_Add_error_class
• MPI_Add_error_code
• MPI_Add_error_string



MPI-2 APIs (continued)

- MPI_Datatype attribute caching
• MPI_Type_create_keyval
• MPI_Type_free_keyval
• MPI_Type_set_attr
• MPI_Type_get_attr
• MPI_Type_delete_attr
• MPI_Type_dup

- MPI_Datatype decoding
• MPI_Type_get_envelope
• MPI_Type_get_contents



Sample MPI-IO Program
#include "mpi.h"
#include "mpio.h"

#define FILE_SIZE (32*32*32*4)

/* This program writes a 3D block-distributed array to a file
* corresponding to a global array in row-major (C) order, reads
* it back, and checks that the data read is correct.
*
* It uses a 32^3 array. For other array sizes, change FILE_SIZE above and
* array_of_gsizes below.
*
* The file name is taken as a command-line argument.
*
* Note that the file access pattern is noncontiguous and collective I/O is used.
*/

main(int argc, char **argv)
{

int i, ndims, array_of_gsizes[3], array_of_distribs[3];
int order, filecount, nprocs, j, len, flag, rc, msglen;
int array_of_dargs[3], array_of_psizes[3];
int *readbuf, *writebuf, bufcount, mynod, *tmpbuf, array_size;
char filename[HPSS_MAX_PATH_NAME + 1], errmsg[MPI_MAX_ERROR_STRING + 1];
MPI_Datatype newtype;
MPI_File fh;
MPI_Status status;
MPI_Request request;



Sample MPI-IO Program - continued
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mynod);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* process 0 takes the file name as a command-line argument and 
broadcasts it to other processes */

if (!mynod) {
i = 1;
while ((i < argc) && strcmp("-fname", argv[i])) i++;

if (i >= argc) {
printf("\n*#  Usage: %s -fname filename\n", argv[0]);
printf("*#  The filename must be a full HPSS path name\n");
printf("*#  An example filename is /users/u28/linda/test\n\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}

strcpy(filename, argv[i]);
len = strlen(filename);

MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(filename, len+1, MPI_CHAR, 0, MPI_COMM_WORLD);

}

else {
MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(filename, len+1, MPI_CHAR, 0, MPI_COMM_WORLD);

}



Sample MPI-IO Program - continued
/* create the distributed array filetype */

ndims = 3;
order = MPI_ORDER_C;

array_of_gsizes[0] = 32;
array_of_gsizes[1] = 32;
array_of_gsizes[2] = 32;

array_of_distribs[0] = MPI_DISTRIBUTE_BLOCK;
array_of_distribs[1] = MPI_DISTRIBUTE_BLOCK;
array_of_distribs[2] = MPI_DISTRIBUTE_BLOCK;

array_of_dargs[0] = MPI_DISTRIBUTE_DFLT_ARG;
array_of_dargs[1] = MPI_DISTRIBUTE_DFLT_ARG;
array_of_dargs[2] = MPI_DISTRIBUTE_DFLT_ARG;

for (i = 0; i < ndims; i++) array_of_psizes[i] = 0;

MPI_Dims_create(nprocs, ndims, array_of_psizes);

MPI_Type_create_darray(nprocs, mynod, ndims, array_of_gsizes, 
array_of_distribs, array_of_dargs,
array_of_psizes, order, MPI_INT, &newtype);

MPI_Type_commit(&newtype);



Sample MPI-IO Program - continued
/* initialize writebuf */

MPI_Type_size(newtype, &bufcount);
bufcount = bufcount / sizeof(int);
writebuf = (int *) malloc(bufcount * sizeof(int));
for (i = 0; i < bufcount; i++) writebuf[i] = 1;

array_size = array_of_gsizes[0] * array_of_gsizes[1] * array_of_gsizes[2];
tmpbuf = (int *) calloc(array_size, sizeof(int));
MPI_Irecv(tmpbuf, 1, newtype, mynod, 10, MPI_COMM_WORLD, &request);
MPI_Send(writebuf, bufcount, MPI_INT, mynod, 10, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

j = 0;
for (i = 0; i < array_size; i++)

if (tmpbuf[i]) {
writebuf[j] = i;
j++;

}
free(tmpbuf);

if (j != bufcount) {
printf("Error in initializing writebuf on node %d\n", mynod);
MPI_Abort(MPI_COMM_WORLD, 1);

}

/* end of initialization */



Sample MPI-IO Program - continued
/* write the array to the file */

rc = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_UNIQUE_OPEN,
MPI_INFO_NULL, &fh);

if (rc != MPI_SUCCESS) {
MPI_Error_string(rc, errmsg, &msglen);
printf("Error opening file: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}
rc = MPI_File_set_view(fh, 0, MPI_INT, newtype, "native", MPI_INFO_NULL);
if (rc != MPI_SUCCESS) {

MPI_Error_string(rc, errmsg, &msglen);
printf("Error setting file view: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}
rc = MPI_File_write_all(fh, writebuf, bufcount, MPI_INT, &status);
if (rc != MPI_SUCCESS) {

MPI_Error_string(rc, errmsg, &msglen);
printf("Error writing file: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}
rc = MPI_File_close(&fh);
if (rc != MPI_SUCCESS) {

MPI_Error_string(rc, errmsg, &msglen);
printf("Error closing file: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}



Sample MPI-IO Program - continued
/* now read it back */

readbuf = (int *) malloc(bufcount * sizeof(int));
MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_RDWR | MPI_MODE_UNIQUE_OPEN | MPI_MODE_DELETE_ON_CLOSE,
MPI_INFO_NULL, &fh);

if (rc != MPI_SUCCESS) {
MPI_Error_string(rc, errmsg, &msglen);
printf("Error opening file: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}
MPI_File_set_view(fh, 0, MPI_INT, newtype, "native", MPI_INFO_NULL);
if (rc != MPI_SUCCESS) {

MPI_Error_string(rc, errmsg, &msglen);
printf("Error setting file view: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}
MPI_File_read_all(fh, readbuf, bufcount, MPI_INT, &status);
if (rc != MPI_SUCCESS) {

MPI_Error_string(rc, errmsg, &msglen);
printf("Error reading file: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}
MPI_File_close(&fh);
if (rc != MPI_SUCCESS) {

MPI_Error_string(rc, errmsg, &msglen);
printf("Error closing file: %s\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}



Sample MPI-IO Program - continued
/* check the data read */

flag = 0;
for (i = 0; i < bufcount; i++) 

if (readbuf[i] != writebuf[i]) {
printf("Node %d, readbuf %d, writebuf %d, i %d\n",

mynod, readbuf[i], writebuf[i], i);
flag = 1;

}
if (!flag) printf("Node %d: data read back is correct\n", mynod);

/* clean up */

MPI_Type_free(&newtype);
free(readbuf);
free(writebuf);

MPI_Finalize();
}
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